
155 Mbps Plastic Fiber Optic Red LED

APPLICATIONS

- ► PC-to-Peripheral Data Links
- ► Motor Controller Triggering
- ► Ethernet LANs
- ► Medical Instruments
- ► Automotive Electronics
- ► Digitized Video and HDTV
- ► Sonet/SDH Transmitters
- ► Robotics Communications
- Isolation from Lightning and Voltage Transients

DESCRIPTION

The IF-E99 is a very high-speed red LED housed in a "connector-less" style plastic fiber optic package. The output spectrum of the IF-E99 is produced by a GaAIAs die that peaks at a wavelength of 650 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling with standard 1000 μ m core plastic fiber cable.

APPLICATION HIGHLIGHTS

The fast transition times of the IF-E99 make it suitable for high-speed digital data links. Link distances in excess of 75 meters at data rates of 155 Mbps are possible using standard 1000 µm core plastic fiber and an IF-D98 photologic detector. The wide analog bandwidth permits direct modulation at RF frequencies exceeding 100 MHz. Drive circuit design for the IF-E99 requires good RF and digital design techniques, but is much simpler than required for laser diodes, making it a good low-cost solution in a variety of high frequency POF analog and digital applications.

FEATURES

- ◆ No Optical Design Required
- $\blacklozenge\,$ Mates with Standard 1000 μm Core Jacketed Plastic Fiber Cable
- Internal Micro-lens for Efficient Coupling
- Inexpensive Plastic Connector Housing
- Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- Excellent Linearity
- ◆ Visible Light Output
- RoHS compliant

MAXIMUM RATINGS

 $(T_{\Delta} = 25^{\circ}C)$ Operating Temperature Range (T_{OP})-0° to 60°C Storage Temperature Range Junction Temperature (T_I)85°C Soldering Temperature (2 mm from case bottom) Reverse Voltage (V_R).....5 V Power Dissipation $(P_{TOT}) T_A = 25^{\circ}C....100 \text{ mW}$ De-rate Above 25°C1.33 mW/°C Forward Current, DC (I_F)40 mA Surge Current (I_{ESM}) t≤10 µsec.....100 mA

CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	λ_{PEAK}	640	650	660	nm
Spectral Bandwidth (50% of I_{MAX})	Δλ	-	10	-	nm
Output Power Coupled into Plastic Fiber	Φ	875	950	1050	μW
(1 mm core diameter). Lens to Fiber distance \leq .1 mm, 1m SH4001 fiber, IF=20 mA		58	2	.21	dBm
Switching Times (10% to 90% and 90% to 10%) ($R_L{=}47\Omega,~I_F{=}10$ mA)	t _r , t _f	_	_	3	ns
Capacitance (V _F =0, F=1 MHz)	C ₀	-	10	-	pF
Forward Voltage (I _F =30 mA)	V _f	-	2.05	2.3	V
Cut off frequency	f _C	-	100	-	MHz

NOTES:

1. A bypass capacitor (0.1 $\mu F)$ is connected to the lead at a position within 2 mm from the lead end, and a 4.7 μF capacitor is also connected nearby the power supply line.

IF-E99

155 Mbps Plastic Fiber Optic Red LED

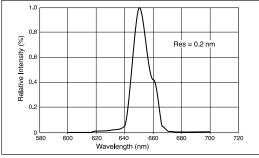


FIGURE 1. Relative intensity versus wavelength.

FIGURE 2. Optical Power output versus temperature (I_F =20mA)

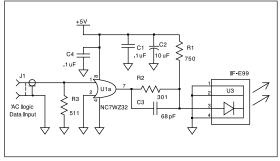


FIGURE 3. Typical interface circuit.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

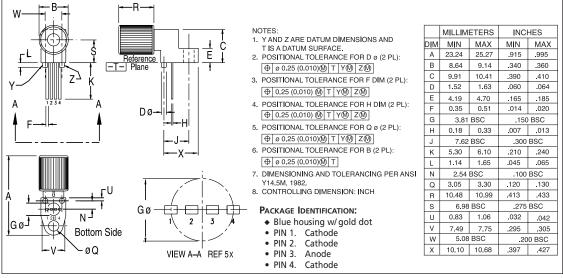


FIGURE 4. Case outline.